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Abstract

We study the problem of stationarity and ergodicity for autoregressive multinomial logistic time series

models which possibly include a latent process and are defined by a GARCH-type recursive equation. We

improve considerably upon the existing results related to stationarity and ergodicity conditions of such

models. Proofs are based on theory developed for chains with complete connections. This approach is

based on a useful coupling technique which is utilized for studying ergodicity of more general finite-

state stochastic processes. Such processes generalize finite-state Markov chains by assuming infinite

order models of past values. For finite order Markov chains, we also discuss ergodicity properties when

some strongly exogenous covariates are considered in the dynamics of the process.
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1 Introduction

The goal of this article is to improve upon theoretical properties of regression based models for the anal-

ysis of categorical time series that might include some covariates. Binary time series are particular cases

of a categorical time series and the results we obtain apply to this case as well. We take the point of view

of generalized linear models theory; see McCullagh and Nelder (1989). The conditional distribution of a

categorical time series given its past is multinomial which obviously belongs to the multivariate exponen-

tial family of distributions. As such, the theory of generalized linear models can be applied for modeling

different types of categorical data; nominal, interval and scale. We will be mostly concerned with nominal

data and therefore the multinomial logistic model is the natural candidate for model fitting; see Fahrmeir

and Tutz (2001) and Kedem and Fokianos (2002), among other references, for further discussion on mod-

eling issues regarding categorical data. We emphasize that finite state Markov chains provide a simple but

prominent model of a categorical time series where lagged values of the response affect the determination

of its future states. However, Markov modeling in the context of categorical time series, poses challenging

problems. Indeed, as the order of the Markov chain increases so does the number of free parameters; in fact,

the number of free parameters increases exponentially fast. Furthermore, the Markovian property requires

simultaneous specification of the dynamics of the response and any possible covariates observed jointly;

such a specification might not be possible, in general.

We will be studying models for binary and, more generally, categorical time series, which are of infinite

order or they are driven by a latent process or a feedback mechanism. This type of models is quite analogous

to GARCH models -see Bollerslev (1986)- but they are defined in terms of conditional log–odds instead of

conditional variances. In particular, feedback models make possible low dimensional parametrization, yet

they can accommodate quite complicated data structures. Examples of feedback models, in the context

of binary and categorical time series have been studied recently by Moysiadis and Fokianos (2014) and

Fokianos and Moysiadis (2017), among others. We will discuss these results and we will compare them

with our findings which improve these works. Models and inference about binary time series, in general,

are topics that have been studied by several authors; see Kedem (1980) for an early treatment. Regression

modeling, in this context, has been studied by Cox (1981), Stern and Coe (1984), and Slud and Kedem

(1994), among others; see also Kedem and Fokianos (2002, Ch. 2-3) for other early references. Recently,

binary time series data have been increasingly popular in various financial applications (Breen et al. (1989),

Butler and Malaikah (1992), Christoffersen and Diebold (2006), Christoffersen et al. (2007), Startz (2008),
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Nyberg (2010, 2011, 2013), Kauppi (2012) and Wu and Cui (2014)), but also to other scientific fields.

Previous results related to theoretical properties of such models were given by de Jong and Woutersen

(2011).

Related work on categorical time series has been reported by Fahrmeir and Kaufmann (1987), Kaufmann

(1987), Fokianos and Kedem (2003) and Russell and Engle (1998, 2005) who proposed a categorical time

series model for financial transactions data. Alternative classes of models are based on the probit link

function. Such autoregressive models have been considered by Zeger and Qaqish (1988), Rydberg and

Shephard (2003), Kauppi and Saikkonen (2008), among others. Several other classes of models for the

analysis of categorical data have been studied; see the books by Joe (1997) and MacDonald and Zucchini

(1997) and the articles by Biswas and Song (2009) and Weiß (2011).

To prove the theoretical results, we will be assuming a contraction type condition; such conditions are

usually employed for the theoretical analysis of time series models. For instance, in the case of count time

series models, see Doukhan et al. (2012), Fokianos et al. (2009) and Neumann (2011). However, our work

is closely related to the modeling approach suggested by Fokianos and Tjøstheim (2011), because the main

idea is essentially to employ the so called canonical link process to model the observed data. Note that

de Jong and Woutersen (2011) have shown near epoch dependence for a binary time series models but these

authors have a different modeling point of view.

Likelihood based inference for the models we study can be developed along the lines of previous ref-

erences. The proof of consistency and asymptotic normality is based on standard arguments concerning

convergence of the score function and the Hessian matrix. However, we mention that this work relaxes

considerably previous results. for the case of a model with covariates we improve upon Kaufmann (1987)

and Kedem and Fokianos (2002, Ch.3) because we avoid any assumptions on the design of covariates or

their boundedness. Since proofs of these facts have been documented in several of the previous references,

we do not give any details.

The article is structured as follows: Section 2 discusses general categorical time series models by allow-

ing the conditional probabilities to depend on the whole past of the series. In addition we will be giving a

result about the stationarity and ergodicity of chains with complete connections. These results this will be

applied to the case of an infinite order autoregressive multinomial logistic model. Section 3 discuss mod-

els which might include a latent process. The results obtained by Theorem 1 are applicable to the case of

models considered by Moysiadis and Fokianos (2014) and Fokianos and Moysiadis (2017) and improve the
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previously given stationarity and ergodicity conditions. Finally, Section 4 discuss inclusion of exogenous

covariates to the autoregressive multinomial logistic model; Theorem 2 is the main result of this section

which discuss existence of such processes and their ergodic properties.

2 Time series autoregressive models for categorical data

2.1 A general approach

Let A be a finite set. For simplicity, we assume that A = {1, 2, . . . ,N}, where N is a nonnegative integer.

Suppose that we observe a process with state space A and we are interested on modeling its dynamics.

For instance, consider modeling of a stock price change (0 for no change, 1 for positive change and -1 for

a negative change; see Russell and Engle (1998)) or sleep state status (see Fokianos and Kedem (2003)).

Towards this goal, define a (N − 1)-dimensional vector Yt =
(
Y1t,Y2t, . . . ,Y(N−1)t

)′, for 1 ≤ t ≤ n, such that

Y jt =

 1, if the j’th category is observed at time t,

0, otherwise,

for all j = 1, 2, . . . ,N−1. Throughout this work, consider a stochastic processes (Yt)t∈Z adapted to a filtration

(Ft)t∈Z which is defined through a vector of conditional "success" probabilities, say pt ≡ (p1t, p2t, . . . , p(N−1)t)′.

In other words

p jt = P
(
Y jt = 1|Ft−1

)
, 1 ≤ j ≤ N − 1. (1)

For the last category N, set YNt = 1 −
∑N−1

j=1 Y jt and corresponding success probability pNt = 1 −
∑N−1

j=1 p jt.

There are several possibilities for autoregressive modeling of processes that take values on a finite space.

For instance, assuming that d is a vector and A, B matrices of appropriate dimension, consider the following

linear model

pt = d + Apt−1 + BYt−1, t ∈ Z, (2)

which was studied by Russell and Engle (1998) and Qaqish (2003). Model (2) implies quite complex

restrictions on the parameters d, A and B because each element of the vector pt has to belong in the interval

(0, 1). Such restrictions become even more involved when a covariate process is included in (2). To avoid

such subtle technicalities, we adapt the generalized linear models point of view; see Fokianos and Kedem

(2003) for instance. For j = 1, 2, . . . ,N − 1, define

λ jt = log
(
p jt/pNt

)
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and suppose that the vector process λt =
(
λ1t, . . . , λ(N−1)t

)′ is determined by the infinite order model

λt = g (Yt−1,Yt−2, . . .) , (3)

where g is a suitably defined function. Then, the process (Yt)t∈Z which satisfies (1) and (3), takes its values

in the set E = {e1, e2, . . . , eN−1, 0} where {e1, . . . , eN−1} is the canonical basis of RN−1 and 0 is the null vector

of RN−1. Furthermore, g : EN → RN−1 is a measurable function and the conditional distribution of Yt given

its past values Y−t−1 ≡ (Yt−1,Yt−2, . . .) possibly depends on its infinite past. A useful example of such process

is given by the linear process

λt = d +
∑
j≥1

A jYt− j (4)

where d is a (N −1)-dimensional vector and (A j) j≥1 is a sequence of (N −1)× (N −1) matrices. Comparison

of (4) to (2) shows that unnecessary restrictions on the unknown coefficients can be circumvented since the

vector λt ∈ R
N−1. Furthermore, covariates can be easily included in (4) by including an additional additive

term. Other categorical type autoregressive models can be considered but (4) has been widely used in several

applications. In the case that N = 2, then (4) is a simple logistic regression model which has been studied

widely in the literature (see Cox and Snell (1970) for an early reference).

Processes, as those we consider in this work, are particular examples of a more general class of processes

which are called chains with complete connections. Such processes have been widely studied in applied

probability; Doeblin and Fortet (1937), Harris (1955) and Iosifescu and Grigorescu (1990). Following

the work of Bressaud et al. (1999), we discuss next a coupling technique related to chains with complete

connections.

2.2 Some results about chains with complete connection

Throughout this section, consider a finite state space E. For x, y ∈ EN and a positive integer m, we write

x m
= y if xi = yi for 0 ≤ i ≤ m − 1. Consider a probability kernel p(·|·) defined on

(
EN,B

(
EN

))
and takes

values on (E,B(E)) which satisfies the following assumption:

Assumption (A) There exists a sequence (γm)m∈N which decreases to zero, as m → ∞, with γ0 < 1 and

such that for a ∈ E

inf
x,y:xm

=y

p (a|x)
p (a|y)

≥ 1 − γm.
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A chain with complete connections is a stationary process satisfying Assumption (A).

For x ∈ EN, consider the chain
(
Zx

n
)
n∈Z which satisfies that Zx

− j = x j for j ≥ 1 and

P
(
Zx

n = a|Zx
n− j = z j, j ≥ 1

)
= p(a|z)

∞∏
j=n+1

1z j=x j−n .

In addition, given a real-valued sequence (γn)n∈N, let the Markov chain
(
S (γ)

n

)
n∈N

taking values in N and

defined by

P
(
S (γ)

0 = 0
)

= 1, P
(
S (γ)

n+1 = i + 1|S (γ)
n = i

)
= 1 − γi, P

(
S (γ)

n+1 = 0|S (γ)
n = i

)
= γi.

For n ≥ 1, define the quantity

γ∗n = P
(
S (γ)

n = 0
)
,

which plays a crucial rule for evaluating the mixing coefficients of the chain. The following result is given

by Bressaud et al. (1999, Prop. 1 and Lemma 1).

Proposition 1. For all x, y ∈ EN, there is a coupling
((

U x,y
n ,V x,y

n

))
n∈Z

of
(
Zx

n
)
n∈Z and

(
Zy

n

)
n∈Z

such that the

integer-valued process
(
T x,y

n

)
n∈Z

defined by

T x,y
n = inf

{
m ≥ 0 : U x,y

n−m , V x,y
n−m

}
,

satisfies

P
(
S (γ)

n ≥ k
)
≤ P

(
T x,y

n ≥ k
)
∀k ∈ N.

Proposition 1 is proved by defining iteratively the pair
(
U x,y

n ,V x,y
n

)
using the maximal coupling of the

conditional distributions p
(
·|(un− j) j≥1

)
and p

(
·|(vn− j) j≥1

)
(i.e the coupling associated to the total variation

distance between these conditional distributions). Proposition 1 yields the following corollary (see also

Bressaud et al. (1999, Cor. 1) for a specific case of the following result).

Corollary 1. For all k ≥ 1, x, y ∈ EN and B ∈ B(Ek), we have

∣∣∣∣P ((Zx
n , . . . ,Z

x
n+k) ∈ B

)
− P

(
(Zy

n, . . . ,Z
y
n+k) ∈ B

)∣∣∣∣ ≤ k∑
j=0

 j−1∏
m=0

(1 − γm)

 γ∗n+k− j.

Proof. Using Proposition 1, we obtain∣∣∣∣P ((Zx
n , . . . ,Z

x
n+k) ∈ B

)
− P

(
(Zy

n, . . . ,Z
y
n+k) ∈ B

)∣∣∣∣ ≤ P
(
(U x,y

n , . . . ,U x,y
n+k) , (V x,y

n , . . . ,V x,y
n+k)

)
≤ P

(
T x,y

n ≤ k
)
.
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Proposition 1 implies that P
(
T x,y

n ≤ k
)
≤ P

(
S (γ)

n ≤ k
)
. The result of the corollary now follows by bounding

P
(
S (γ)

n ≤ k
)

along the lines of the derivation of Bressaud et al. (1999, eq. (4.25)). �

As pointed out in Bressaud et al. (1999), if limn→∞ γ
∗
n = 0, Corollary 1 implies existence and uniqueness

of a stationary chain (Zn)n∈Z with complete connections and satisfying Assumption (A).

Furthermore, Corollary 1 yields a bound for controlling the φ−mixing coefficients associated with

(Zn)n∈Z. Indeed, recall that for two σ−algebras A and B, their φ−mixing coefficients are defined by (see

Doukhan (1994), for instance)

φ (A,B) = sup
(A,B)∈A×B:P(A)>0

(
|P (B|A) − P(B)|

)
.

Then, the φ-mixing coefficients of the random sequence (Zn)n∈Z are given by

φ(n) = φ
(
F−∞,0,Fn,∞

)
.

Since a Borel set on the infinite product can be approximated by a finite union of cylinder sets, we have also

φ(n) = sup
k∈N

φ
(
F−∞,0,Fn,n+k

)
.

Proposition 2. Suppose that
∑

n≥1 γ
∗
n < ∞. Then the infinite order stationary Markov chain (Zn)n∈Z, which

exists by Corollary 1, is φ−mixing with mixing coefficients satisfying φ(n) ≤
∑

j≥n γ
∗
j .

Proof. Suppose that µ denotes the probability distribution of (Zi)i≤−1. Then∣∣∣∣P ((Zx
n , . . . ,Z

x
n+k) ∈ B

)
− P ((Zn, . . . ,Zn+k) ∈ B)

∣∣∣∣ ≤ ∫ ∣∣∣∣P ((Zx
n , . . . ,Z

x
n+k) ∈ B

)
− P

(
(Zy

n, . . . ,Z
y
n+k) ∈ B

)∣∣∣∣ µ(dy)

≤

k∑
j=0

 j−1∏
m=0

(1 − γm)

 γ∗n+k− j.

But the last bound does not depend on x. Hence, we obtain∣∣∣P ((Zn, . . . ,Zn+k) ∈ B|F−∞,0
)
− P ((Zn, . . . ,Zn+k) ∈ B)

∣∣∣ ≤ k∑
j=0

 j−1∏
m=0

(1 − γm)

 γ∗n+k− j

≤
∑
j≥n

γ∗j .

The last bound, which does not depend on k and B, is also an upper bound for φ(n). �

Remark 1. It has been shown in Bressaud et al. (1999, Prop. 2) that∑
k≥1

γk < ∞ ⇒
∑
k≥1

γ∗k < ∞.
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Moreover, if (γm)m decreases exponentially, then so does
(
γ∗n

)
n. Hence, the result of Prop. 2 follows again

and if (γm)m decreases to zero exponentially fast then so does (φ(n))n. Note also that the φ−mixing property

implies ergodicity of the process; see Bradley (2007, pp. 50-51).

2.3 Application to categorical time series

Recall the categorical time series model (Yt)t∈Z whose state space is E = {e1, . . . , eN−1, 0} and defined by (1)

and (3). From the results of the previous subsection, we deduce the following corollary. (‖ · ‖ denotes the

Euclidian norm on RN−1.)

Corollary 2. Assume model (3) and let a function g : EN → RN−1 be such that there exist a sequence (δ j) j∈N

which satisfies
∑

j∈N
∑

k≥ j δk < ∞ and

‖g(x) − g(y)‖ ≤
∑
j∈N

δ j1x j,y j . (5)

Then, there exists a unique stochastic process (Yt)t∈Z taking values in E such that

P
(
Yt = e j|Ft−1

)
=

exp
(
g j (Yt−1,Yt−2, . . .)

)
1 +

∑N−1
s=1 exp (gs (Yt−1,Yt−2, . . .))

, 1 ≤ j ≤ N − 1. (6)

Moreover (Yt)t∈Z is stationary and φ−mixing.

Proof. Denote by p(·|·) the probability kernel defined by

p(e j|x) = F j
[
g (x0, x1, . . .)

]
, 1 ≤ j ≤ N − 1,

where F j : RN−1 → [0, 1] is defined for z ∈ RN−1 by

F j(z) =
exp(z j)

1 +
∑N−1

s=1 exp(zs)
, 1 ≤ j ≤ N − 1.

Because of (1), FN(z) =
(
1 +

∑N−1
s=1 exp(zs)

)−1
. The Lipschitz assumption (5) implies that the j’th component

of g, say g j, is bounded, for j = 1, 2 . . . ,N. Hence, there exists η > 0 such that, for all 1 ≤ j ≤ N − 1 and

x ∈ EN,

η ≤ p(e j|x), η ≤ p(0|x).

Moreover, F′j is bounded, for all j. Set M = max1≤ j≤N−1 supz∈RN−1 ‖F′j(z)‖. Then, if x m
= y and a ∈ E, we

have that
p(a|x)
p(a|y)

≥ 1 −
M

∑
j≥m+1 δ j

η
.
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Provided that m is large enough, choose γm = M
∑

j≥m+1 δ j/η. Hence, there exists an m such that

γm = 1 − η. Then we have
∑

k≥1 γk < ∞ and using Remark 1, we have also
∑

k≥1 γ
∗
k < ∞. Then from

Corollary 1 and Proposition 2, there exists a unique stationary solution (Yt)t∈Z satisfying (6) and the solution

is φ−mixing. �

We note that the condition
∑

j∈N
∑

k≥ j ak < ∞ is equivalent to the condition
∑

j∈N ja j < ∞. For the

infinite order linear model (4), Corollary 2 applies provided that
∑

j≥1 j‖A j‖ < ∞ where ‖A j‖ denotes the

corresponding operator norm of the matrix A j. In particular, when N = 2, we obtain that the logistic

autoregressive model of infinite order is stationary and φ-mixing if
∑

j≥1 j|A j| < ∞, where (A j) j≥1 belongs

to R.

3 Categorical time series with a latent process

In this section, we consider some specific instances of chains with complete connections. Following the

methodology of GARCH models (see Engle (1982), Bollerslev (1986) and the book by Francq and Zakoïan

(2010) for instance), and recalling the notation introduced in (3) we model the latent process (λt)t∈Z to de-

pend additionally on its past values. From a statistical perspective, such parametrization yields parsimony

and allows for more flexible structures that can accommodate various forms of autocorrelation. To be spe-

cific, suppose that p and q are two positive integers and Let f : R(N−1)p × Eq → RN−1 be a function such

that

λt = f
(
λt−1, . . . , λt−p,Yt−1, . . . ,Yt−q

)
, t ∈ Z. (7)

We will say that the process ((Yt, λt))t∈Z is a solution of the problem P f if (7) is satisfied and for each t ∈ Z,

λt is Ft−1−measurable.

3.1 A general result

For y ∈ Eq, define the mapping Gy : R(N−1)p → R(N−1)p by

Gy(x) =
(

f (x1, . . . , xp, y1, . . . , yq)′, x′1, . . . , x
′
p−1

)′
,

where f (·) has been defined by (7). The main result of this section is the following.
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Theorem 1. Suppose that there exist an integer k ≥ 1, κ ∈ (0, 1) and K > 0 such that

‖Gy(x) −Gy′(x′)‖ ≤ K
(
‖x − x′‖ + 1y,y′

)
,

and for all x, x′, y
1
, . . . , y

q
,

‖Gy
1
◦ · · · ◦Gy

k
(x) −Gy

1
◦ · · · ◦Gy

k
(x′)‖ ≤ κ‖x − x′‖.

Then, the following hold true:

1. Let x be a vector of R(N−1)p and
(
y

j

)
j≥1

a sequence of elements of Eq. Then the limit

lim
s→∞

Gy
1
◦ · · · ◦Gy

s
(x)

exists and does not depend on x. Let H : (Eq)N → R(N−1)p be the function defined by

H
(
y

1
, y

2
, . . .

)
= lim

s→∞
Gy

1
◦ · · · ◦Gy

s
(x).

Then the function H is bounded. Moreover there exist C > 0 such that

‖H
(
y

1
, y

2
, . . .

)
− H

(
y′

1
, y′

2
, . . .

)
‖ ≤ C

∑
j≥1

κ j/k1y
j
,y′

j
.

2. A process ((Yt, λt))t∈Z is solution of the problem P f is and only if (Yt)t∈Z is a chain with complete

connection associated to a function g (see Corollary 2) defined by

g (Yt−1,Yt−2, . . .) = H1 (Vt,Vt−1, . . .) , Vt = (Yt−1, . . . ,Yt−q).

Here H1 denotes the N − 1 first coordiantes of the function H defined previously.

3. There exists a unique strictly stationary solution to the equations (1) and (7). Moreover the process

(Yt)t∈Z is φ−mixing with a geometric decrease for the mixing coefficients. This implies the ergodicity

of the joint process ((Yt, λt))t∈Z.

Proof. 1. The first part of the assertion is a straightforward consequence of the assumption and is omit-

ted. We focus on the proof of the Lipschitz property of the function H. For j ≥ 1, we set

G( j)
y = Gy

( j−1)k+1
◦Gy

( j−1)k+2
◦ · · · ◦Gy

jk
.

We have

H
(
y

1
, y

2
, . . .

)
= lim

s→∞
G(1)

y ◦ · · · ◦G(s)
y (x).
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By the stated assumption, we obtain that

‖G( j)
y (x) −G( j)

y′ (x)‖ ≤
k∑
`=1

K`1y
( j−1)k+`

,y′
( j−1)k+`

.

Hence

‖G(1)
y ◦ · · · ◦G(s)

y (x) −G(1)
y′ ◦ · · · ◦G(s)

y′ (x)‖ ≤
∞∑
j=1

κ j
k∑
`=1

K`1y
( j−1)k+`

,y′
( j−1)k+`

.

By setting C = (K ∨ 1)k and letting x→ ∞ we obtain the result.

2. From the first point of the theorem, the necessary condition follows easily. Now let us assume that

λt = H1 (Vt,Vt−1, . . .). Setting λt = H (Vt,Vt−1, . . .), note that the continuity of the function GVt

implies that

λt = lim
s→∞

GVt ◦GVt−1 ◦ · · ·GVt−s(x)

= GVt

(
lim
s→∞

GVt−1 ◦ · · · ◦GVt−s(x)
)

= GVt

(
λt

)
,

which proofs that (λt)t∈Z satisfies (7).

3. The third point is a straightforward consequence of the two first results and of Corollary 2. Moreover

the geometric decay of the φ−mixing coefficients has been discussed in the remarks made following

Proposition 2. Finally, it is well-known that φ−mixing implies ergodicity of the process (Yt)t∈Z and

then ergodicity of the process ((λt,Yt))t∈Z; see Samorodnitsky (2016, Ch. 2), for instance.

�

3.2 Linear models

Let A0, A1, . . . , Ap, B1, . . . , Bq be some real matrices of size (N − 1) × (N − 1). We assume that

f
(
x1, . . . , xp; y1, . . . , yq

)
= A0 +

p∑
i=1

Aixi +

q∑
i=1

Biyi.

Then the above model can be written alternatively as

GVt

(
x
)

= Ãx + B,
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with

Ã =

 A1 · · · Ap−1 Ap

I(N−1)(p−1) 0

 , B =



A0 +
∑q

i=1 BiYt−i

0
...

0


,

where I(N−1)(p−1) denotes the identity matrix of order (N − 1)(p − 1). Then, the assumptions of Theorem

1 are satisfied if the spectral radius of Ã is less than unity (and then the norm of Ãk is less than one if k is

large enough) which also means that the roots of the polynomial P(z) = det
(
IN−1 −

∑p
i=1 Aizi

)
are outside

the unit disc; Lütkepohl (2005, Ch.2). For the case p = q = 1, this result improves the conditions proved

by Moysiadis and Fokianos (2014) since it does not require and additional assumption on the coefficient B1.

In addition, the results answers in affirmative the question posed by Tjøstheim (2012) for the case of binary

autoregressive model. Compared with the work of Fokianos and Moysiadis (2017) we note again that for

the case of logistic autoregressive modeling with binary data, the obtained conditions simplify considerably

since it is only required that the coefficients corresponding to the latent process have sum less than one in

absolute value.

3.3 Non-linear models

Recall (7) and assume that there exists a norm ‖·‖ onRN−1 and some positive real numbers β1, . . . , βp, α1, . . . , αq

with α =
∑p

i=1 αi < 1 and for all x1, x′1, . . . , xp, x′p, y1, y′1, . . . , yq, y′q ∈ R
N−1,

‖ f
(
x1, . . . , xp; y1, . . . , yq

)
− f

(
x′1, . . . , x

′
p; y′1, . . . , y

′
q

)
‖ ≤

p∑
i=1

αi‖xi − x′i‖ +

q∑
i=1

βi‖yi − y′i‖.

It can be proved under this condition that, for a process (Zt)t∈Z taking values in Eq, the random mapping

GZt (x) =
(

f (x,Zt), x1, . . . , xp−1
)

is contracting, after iteration. Indeed, if x, y ∈ Rp, σx
i = xi for 1 ≤ i ≤ p and

σx
t = f

(
σx

t−1, . . . , σ
x
t−p,Zt

)
, t ≥ p + 1,

it follows by induction that ∥∥∥σx
t − σ

y
t

∥∥∥ ≤ α t−p
p ‖x − y‖, t ≥ p + 1.

Hence, there exists an integer m ≥ 1, such that the mapping

H(m)
t (x) = GZt ◦GZt−1 ◦ · · · ◦GZt−m(x)

12



satisfies ∥∥∥∥H(m)
t (x) − H(m)

t (x′)
∥∥∥∥ ≤ κ‖x − x′‖

for some κ ∈ (0, 1). Therefore the assumption of Theorem 1 is satisfied. We note again that this condition

improves upon the conditions obtained by Moysiadis and Fokianos (2014) and Fokianos and Moysiadis

(2017) since they require only that α < 1.

4 Inclusion of exogenous covariates

In this section, we study the problem of including a covariate process (Zt)t∈Z in an autoregressive categorical

time series model. We will be assuming that the covariate process is strongly exogenous. Such an assump-

tion implies that for each time t, Yt is independent from (Zs)s≥t+1 conditionally to Yt−1,Zt,Yt−2,Zt−1 . . . and

allows simple computation of the likelihood function. Indeed, if f
(
·|Y−t−1,Zt

)
denotes the conditional density

of Yt given Yt−1,Zt,Yt−2,Zt−1 . . ., then, for a bounded measurable function h,

E
[
h (Y1,Y2, . . . ,Yn)

∣∣∣Z1 = z1, . . . ,Zn = zn,Y−0 = y−0
]

=

∫
h(y1, . . . , yn)

n∏
i=1

f
(
yi|y−i−1, zi

)
µ(dy1) · · · µ(dyn),

where µ denotes a reference measure for the model. This type of exogeneity is also called Granger causality

or Sims causality in the literature (see, for instance, Gouriéroux and Monfort (1995, Sec. 1.5.2), for a

discussion of these different concepts). We will be restricting our study to the case of finite order Markov

chains, i.e. the parameter λt does not depend on its past values. The general case appears more difficult to

tackle and is will be considered in another communication.

Note that even for a finite-state Markov chain, it is difficult to find in the literature a result which guar-

antees ergodicity when some covariates are included in the dynamic. As we will see, there is an interesting

parallel between Markov chains with exogeneous covariates and Markov chains in random environments

which were studied in probability theory. In the proof of Theorem 2 given below, we will use an approach

discussed in Cogburn (1984) for showing ergodicity of Markov processes in random environments.

4.1 A general result for finite state Markov chains with covariates

We will be discussing results concerning stationarity and ergodicity of a finite state Markov chain which can

be jointly observed with a covariate process. In what follows, denote by Z = (Zt)t∈Z a stationary process

with values in the space G = Rd and (Yt)t∈N a process which takes values in a finite set E. In addition,

13



conditionally on Z, (Yt)t∈N is a finite-state inhomogeneous Markov chain. More precisely, we assume that

there exist a family of transition matrices
{
Pg : g ∈ G

}
such that

P (Yt = y|Yt−1 = x; Z) = PZt (x, y), (x, y) ∈ E2. (8)

Throughout the section we will assume the following:

(E1) There exists an integer m ≥ 1 such that for all (z1, z2, . . . , zm, x, y) ∈ Gm × E2,

Pz1 Pz2 · · · Pzm(x, y) > 0.

(E2) The process Z is mixing in the ergodic theory sense, i.e for all elements A and B of B
(
GZ

)
, we have

lim
n→∞
P
(
Z ∈ A, τnZ ∈ B

)
= P(Z ∈ A)P(Z ∈ B),

where τ denotes the shift operator on FZ defined by τZ =
(
Z j+1

)
j∈Z

.

Note that Assumption (E1) implies that a process (Yt)t∈Z satisfying (8) also satisfies

P (Yt+m = y|Yt = x,Z) > 0, a.s (x, y, t) ∈ E × E × Z.

In addition, Assumption (E2) is stronger than the assuming ergodicity of the process Z but weaker than

the classical strong mixing condition usually employed in the literature. A large number of useful stochas-

tic processes are mixing, for instance the strong mixing processes and Bernoulli shifts defined by Zt =

H (εt, εt−1, . . .) where H is a measurable function and (εt)t∈Z is an i.i.d sequence. For instance, Samorodnit-

sky (2016, Ch.2), discusses several properties of the different types of mixing in ergodic theory of stationary

processes. Assumption (E2) will be employed for obtaining ergodicity for the shift operator τm which is not

implied by the ergodicity of the shift operator τ. The main result of this section is given by the following

theorem.

Theorem 2. Suppose that (E1-E2) hold true. Then there exists a unique stochastic process (Yt)t∈Z satisfying

(8). Moreover the process ((Yt,Zt))t∈Z is ergodic.

Proof. We first show that the almost sure limit lims→∞ PZt−s · · · PZt (x, y) exists for each y ∈ E and does

not depend on x. For Markov chains, this condition is comparable to the weak ergodicity notion, but here

the limit is taken in the backward sense. See Seneta (2006) for several sufficient conditions ensuring weak
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ergodicity properties of time-inhomogeneous Markov chains, using ergodicity coefficients. Recall that the

so-called Dobrushin’s contraction coefficient of a stochastic matrix P is defined by

c(P) =
1
2

sup
x,y∈E

‖P(x, ·) − P(y, ·)‖TV .

We remind that for two probability mesures µ and ν on the finite set E, the total variation distance between

µ and ν is defined by ‖µ − ν‖TV =
∑

x∈E |µ(x) − ν(x)|. It is well known that we have the contraction

‖µP − νP‖TV ≤ c(P)‖µ − ν‖TV

and for two stochastic matrices P and Q, we have c(PQ) ≤ c(P)c(Q).

Moreover c(P) ≤ 1− |E|minx,y∈E P(x, y), where |E| denotes the cardinality of the set E. So Assumption (E1)

ensures that for all t ∈ Z, c
(
PZt PZt+1 · · · PZt+m−1

)
< 1 a.s. Now let x , x′ ∈ E, t ∈ Z and s = km + `. we obtain

by setting ρ = 1 − η|E|,

‖PZt−s+1 · · · PZt (x, ·) − PZt−s+1 · · · PZt (x′, ·)‖TV ≤ 2c
(
PZt−km+1 · · · PZt

)
≤ 2

k−1∏
j=0

c
(
PZt−( j+1)m+1 · · · PZt− jm

)
.

From Assumption (E2), the covariate process Z is mixing. Then the process
(
Zt− j

)
j∈Z

is also mixing. Indeed,

if θt and τ denote the applications defined on GZ by θt x = (xt−i)i∈Z and τx = (xi+1)i∈Z respectively, we have

τ ◦ θt = θt ◦ τ
−1. Then for two borelians Aand B, we get

P
(
θtZ ∈ A, τnθtZ ∈ B

)
= P

(
Z ∈ θ−1

t A, τ−nZ ∈ θ−1
t B

)
= P

(
τnZ ∈ θ−1

t A,Z ∈ θ−1
t B

)
→ P (θtZ ∈ A)P (θtZ ∈ B) .

Moreover, observe that the operator τm is ergodic for PZ . Indeed, if a borelian set A is such that τmA = A,

we have using assumption E2,

P (Z ∈ A) = P
(
τkmZ ∈ A,Z ∈ A

)
→k→∞ P (Z ∈ A)2 .

Then, we conclude that PZ(A) ∈ {0, 1}, which shows that τm is ergodic. Now, using Assumption (E1), we

have E log c
(
PZ1 · · · PZm

)
< 0. Then from the ergodic theorem, we get

k−1∏
j=0

c
(
PZt−( j+1)m+1 · · · PZt− jm

)
= exp

k−1∑
j=0

log c
(
PZt−( j+1)m+1 · · · PZt− jm

)→k→∞ 0.
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In addition, when n ≥ s, we deduce that

‖PZt−s+1 · · · PZt (x, ·) − PZt−n · · · PZt (x, ·)‖TV ≤ 2c
(
PZt−s+1 · · · PZt

)
.

This shows that the product of matrices PZt−s+1 · · · PZt converges, when s→ ∞, to a stochastic matrix whose

rows are all equal. Then there exists a measurable function D : FN → EN with N = |E| such that

D (Zt,Zt−1, . . .) = lim
s→∞

PZt−s+1 · · · PZt (x, ·) a.s.

Setting Dt = D (Zt,Zt−1, . . .), Dt is a random probability measure on E. For t ∈ Z, z ∈ FZ, k a non-negative

integer and y0, y1, . . . , yk ∈ E, we set

µt:t+k(z; y0, y1, . . . , yk) =

k∏
i=1

Pzt+i(yi−1, yi)Dt (y0) .

From the Kolmogorov extension theorem, there exists for PZ−almost all values of z ∈ B
(
GZ

)
a unique

measure µ(z, ·) on EZ with marginals µt:t+k(z, ·). Hence, if ζ denotes the probability distribution of Z, the

measure γ defined by

γ(A × B) =

∫
B
µ(z, A)ζ(dz), (A, B) ∈ B(EZ) × B(FZ),

is that of a couple of stationary process (Y,Z) satisfying (8). To show uniqueness, let
(
Y ′t

)
t∈Z be another

stochastic process satisfying (8). Then the distribution of Y ′|Z = z is that of a non-homogeneous Markov

chain with transitions {Pzt : t ∈ Z}. As shown before, this conditional distribution is unique and equal to

µ(z, ·).

Next we show ergodicity of the process ((Yt,Zt))t∈Z. To this end, we use an approach introduced in Cogburn

(1984) for the study of Markov processes in random environment. This type of argument is also used in Sinn

and Poupart (2011) for positive transition matrix PZt and we give here a more general and shorter proof. The

approach used in Cogburn (1984) consists in considering the Markov kernel Q on E × F defined by

Q ((x, z), {y} × A) = Pz1(x, y)1A(τz), A ∈ B
(
FZ

)
.

If ν denotes the probability distribution (Yt, τ
tZ) which takes values in E×F, then ν is invariant for Q and the

process (Ht)t∈Z defined by Ht = (Yt, τ
tZ) is a Markov chain of transition kernel Q. Let C be a ν− invariant

set, i.e Q((x, z),C) = 1 for ν−almost every (x, z) ∈ C. Using Corollary 5.11 in Hairer (2006), the Markov

chain (Ht)t∈Z forms an ergodic process if and only if every ν−invariant set C is of measure 0 or 1. In our
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case, we have C = ∪x∈E{x} × Cx for some Cx ∈ B
(
FZ

)
. To this end, we first note that if C is ν−invariant,

then

ν(C) = νQ(C) =

∫
C

dν(x, z)Q((x, z),C) +

∫
Cc

dν(x, z)Q((x, z),C) = ν(C) +

∫
Cc

dν(x, z)Q((x, z),C).

Then we get Q((x, z),C) = 0 for ν−almost every (x, z) ∈ Cc, the complement of C in E × F. Hence, we

obtain Q((x, z),C) = Q1C(x, z) = 1C(x, z) for ν−almost every (x, z). But this also gives Qm1C = 1C , ν a.e,

where m has been defined by assumption (E1). Moreover, we have that

Qm((x, z),C) =
∑
y∈E

1C(y, τmz)
[
Pz1 · · · Pzm

]
(x, y). (9)

We write A = B ν−a.e. if ν (A∆B) = 0 where A∆B denotes the symmetric difference of the sets A and B,

i.e A∆B = (A ∩ Bc) ∪ (Ac ∩ B). From assumption (E1), all the entries of the matrix Pz1 · · · Pzm are positive.

Then we deduce that for almost every (x, z) ∈ C, we have (y, τmz) ∈ C for all y ∈ E. We set D = ∩y∈ECy.

Let us denote by ν1 and ν2 the marginals of ν. We first remark that for all A ∈ B(F), we have

ν ({x} × A) =

∫
A
P (Y0 = x|Z = z) ν2(dx) =

∑
y∈E

∫
A
P (Y0 = x|Y−m = y,Z = z)P (Yn = y|Z = z) ν2(dz).

Employing again assumption (E1), we get ν ({x} × A) ≥ ην2(A). For x ∈ E, we set Bx = τmCx \D. As stated

above we have

ν ({(x, z) : z ∈ Bx}) =
∑
x∈E

ν ({x} × Bx) = 0.

We conclude that ν2(Bx) = 0 for all x ∈ E and then ν2 (τmCx \Cx) = 0. By stationarity, ν2 (τmCx) = ν2 (Cx).

Therefore, for every x ∈ E, τmCx = Cx, µ−a.e. But using assumption E2, we have that

ν2 (Cx) = ν2
(
τkmCx ∩Cx

)
→k→∞ ν2 (Cx)2 .

Then, we conclude that ν2(Cx) ∈ {0, 1}. If ν2(Cx) = 0 for every x, we easily get ν(C) = 0. Now if there exists

x ∈ E such that ν2(Cx) = 1, we have, using the equality ν2(Bx) = 0,

1 ≤ ν2(Cx) = ν2
(
τmCx

)
= ν2

(
τmCx ∩ D

)
≤ ν2(D) ≤ min

y∈E
ν2(Cy).

Then ν2(Cy) = 1 for each y ∈ E. Finally we obtain

ν(C) =
∑
y∈E

ν
(
{y} ×Cy

)
=

∑
y∈E

ν1(y) = 1.

Hence, we have shown that the process (Ht)t∈Z is ergodic and so is the process ((Yt,Zt)t∈Z.

�
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4.2 Application to the multinomial logistic model with covariates

We assume here that conditionally to a covariate process (Zt)t∈Z taking values in Rd, the process (Yt)t∈Z is a

q−order Markov chain such that

P
(
Yt = e j|Yt−1, . . . ,Yt−q,Z

)
=

exp
(
g j

(
Yt−1, . . . ,Yt−q; Zt

))
1 +

∑N−1
s=1 exp

(
gs

(
Yt−1, . . . ,Yt−q; Zt

)) := QZt

(
Yt−q:t−1, e j

)
for some measurable functions g j : Eq ×Rd, 1 ≤ j ≤ N − 1. Let us check that assumption E1 is satisfied for

the conditional Markov chain (Xt)t∈Z defined by Xt =
(
Y ′t ,Y

′
t−1, . . . ,Y

′
t−q+1

)′
. Conditionally to Z, the process

(Xt)t∈Z defines a time-inhomogeneous Markov chains such that

PZt

(
(u1, . . . , uq), (v1, . . . , vq)

)
: = QZt

(
(u1, . . . , uq), v1

) q−1∏
s=1

1vs+1=us .

Since the transition QZt takes only positive values, the assumption E1 follows by taking m = q and γ = aq.

Then assuming E2 for the covariate process, Theorem 2 applies and guarantees the ergodicity of the process

((Yt,Zt))t∈Z.
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